Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 13: 782175, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369445

RESUMEN

Komagataeibacter is the dominant taxon and cellulose-producing bacteria in the Kombucha Microbial Community (KMC). This is the first study to isolate the K. oboediens genome from a reactivated space-exposed KMC sample and comprehensively characterize it. The space-exposed genome was compared with the Earth-based reference genome to understand the genome stability of K. oboediens under extraterrestrial conditions during a long time. Our results suggest that the genomes of K. oboediens IMBG180 (ground sample) and K. oboediens IMBG185 (space-exposed) are remarkably similar in topology, genomic islands, transposases, prion-like proteins, and number of plasmids and CRISPR-Cas cassettes. Nonetheless, there was a difference in the length of plasmids and the location of cas genes. A small difference was observed in the number of protein coding genes. Despite these differences, they do not affect any genetic metabolic profile of the cellulose synthesis, nitrogen-fixation, hopanoid lipids biosynthesis, and stress-related pathways. Minor changes are only observed in central carbohydrate and energy metabolism pathways gene numbers or sequence completeness. Altogether, these findings suggest that K. oboediens maintains its genome stability and functionality in KMC exposed to the space environment most probably due to the protective role of the KMC biofilm. Furthermore, due to its unaffected metabolic pathways, this bacterial species may also retain some promising potential for space applications.

2.
J Biomed Mater Res B Appl Biomater ; 110(8): 1796-1805, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35191591

RESUMEN

The increased antibiotic resistance of pathogenic bacteria requires intense research of new wound healing agents. Novel wound dressings should be designed to provide wound disinfection, good moisture, and fast epithelization. In this study, bacterial cellulose (BC) was impregnated with graphene quantum dots (GQDs) for potential use in wound healing treatment. The BC was successfully loaded with approximately 11.7 wt% of GQDs. The actual release of GQDs from new designed composite hydrogels were 13%. Novel GQDs-BC hydrogel composites are biocompatible and showed significant inhibition towards Staphylococcus aureus and Streptococcus agalactiae and bactericidal effect towards Methicillin-resistant Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The in vitro healing analysis showed significant migration of human fibroblasts after the GQDs-BC hydrogels application. Furthermore, after 72 h exposure to GQDs-BC, endothelial nitric oxide synthase, vascular endothelial growth factor A, matrix metallopeptidase 9, and Vimentin gene expression in fibroblast were significantly upregulated promoting angiogenesis. GQDs-BC hydrogel composites showed very good wound fluid absorption and water retention, which satisfies good dressing properties. All obtained results propose new designed GQDs-BC hydrogels as potential wound dressings.


Asunto(s)
Grafito , Staphylococcus aureus Resistente a Meticilina , Puntos Cuánticos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Celulosa/farmacología , Escherichia coli , Grafito/farmacología , Humanos , Hidrogeles/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología , Cicatrización de Heridas
3.
Int J Biol Macromol ; 191: 315-323, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34562533

RESUMEN

Since the pathogenic bacteria biofilms are involved in 70% of chronic infections and their resistance to antibiotics is increased, the research in this field requires new healing agents. New composite hydrogels were designed as potential chronic wound dressings composed of bacterial cellulose (BC) with chitosan polymer (Chi) - BC-Chi and chitosan nanoparticles (nChiD) - BC-nChiD. nChiD were obtained by gamma irradiation at doses: 20, 40 and 60 kGy. Physical and chemical analyses showed incorporation of Chi and encapsulation of nChiD into BC. The BC-Chi has the highest average surface roughness. BC-nChiD hydrogels show an irradiated dose-dependent increase of average surface roughness. New composite hydrogels are biocompatible with excellent anti-biofilm potential with up to 90% reduction of viable biofilm and up to 65% reduction of biofilm height. The BC-nChiD showed better dressing characteristics: higher porosity, higher wound fluid absorption and faster migration of cells (in vitro healing). All obtained results confirmed both composite hydrogels as promising chronic wound healing agents.


Asunto(s)
Antibacterianos/química , Vendas Hidrocoloidales , Celulosa/química , Quitosano/química , Nanogeles/química , Adulto , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Células Cultivadas , Humanos
4.
Mater Sci Eng C Mater Biol Appl ; 122: 111925, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33641918

RESUMEN

Bacterial infection and their resistance to known antibiotics delays wound healing. In this study, nanochitosan dots (nChiD) produced by gamma irradiation have been encapsulated in bacterial cellulose (BC) polymer matrix to study the antibacterial potentials of these nanocomposites and their possible usage in wound healing treatment (scratch assay). Detailed analyses show that nChiDs have disc-like shape and average diameter in the range of 40 to 60 nm depending of the applied dose. All nChiDs as well as BC-nChiD nanocomposites emit green photoluminescence independently on the excitation wavelengths. The new designed nanocomposites do not have a cytotoxic effect; antioxidant analysis shows their moderate radical scavenging activity whereas antibacterial properties show significant growth inhibition of strains mostly found in difficult-to-heal wounds. The obtained results confirm that new designed BC-nChiD nanocomposites might be potential agent in wound healing treatment.


Asunto(s)
Antioxidantes , Nanocompuestos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antioxidantes/farmacología , Celulosa , Hidrogeles , Cicatrización de Heridas
5.
RSC Adv ; 11(15): 8559-8568, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423394

RESUMEN

Therapy of bacterial urinary tract infections (UTIs) and catheter associated urinary tract infections (CAUTIs) is still a great challenge because of the resistance of bacteria to nowadays used antibiotics and encrustation of catheters. Bacterial cellulose (BC) as a biocompatible material with a high porosity allows incorporation of different materials in its three dimensional network structure. In this work a low molecular weight chitosan (Chi) polymer is incorporated in BC with different concentrations. Different characterization techniques are used to investigate structural and optical properties of these composites. Radical scavenging activity test shows moderate antioxidant activity of these biocompatible composites whereas in vitro release test shows that 13.3% of chitosan is released after 72 h. Antibacterial testing of BC-Chi composites conducted on Gram-positive and Gram-negative bacteria causing UTIs and CAUTIs (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae) and encrustation (Proteus mirabilis) show bactericidal effect. The morphology analysis of bacteria after the application of BC-Chi shows that they are flattened with a rough surface, with a tendency to agglomerate and with decreased length and width. All obtained results show that BC-Chi composites might be considered as potential biomedical agents in treatment of UTIs and CAUTIs and as a urinary catheter coating in encrustation prevention.

6.
AMB Express ; 5(1): 124, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26061774

RESUMEN

Introducing of the DNA metabarcoding analysis of probiotic microbial communities allowed getting insight into their functioning and establishing a better control on safety and efficacy of the probiotic communities. In this work the kombucha poly-microbial probiotic community was analysed to study its flexibility under different growth conditions. Environmental DNA sequencing revealed a complex and flexible composition of the kombucha microbial culture (KMC) constituting more bacterial and fungal organisms in addition to those found by cultural method. The community comprised bacterial and yeast components including cultured and uncultivable microorganisms. Culturing the KMC under different conditions revealed the core part of the community which included acetobacteria of two genera Komagataeibacter (former Gluconacetobacter) and Gluconobacter, and representatives of several yeast genera among which Brettanomyces/Dekkera and Pichia (including former Issatchenkia) were dominant. Herbaspirillum spp. and Halomonas spp., which previously had not been described in KMC, were found to be minor but permanent members of the community. The community composition was dependent on the growth conditions. The bacterial component of KMC was relatively stable, but may include additional member-lactobacilli. The yeast species composition was significantly variable. High-throughput sequencing showed complexity and variability of KMC that may affect the quality of the probiotic drink. It was hypothesized that the kombucha core community might recruit some environmental bacteria, particularly lactobacilli, which potentially may contribute to the fermentative capacity of the probiotic drink. As many KMC-associated microorganisms cannot be cultured out of the community, a robust control for community composition should be provided by using DNA metabarcoding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...